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This paper describes the development of the self-gravity modeling tool used to 
predict and control the motion of one of the proof masses of the orbiting LISA 
gravitational wave detector. LISA is a space-borne gravitational wave detector, which is 
formed by three spacecraft orbiting the Sun and forming the vertices of an equilateral 
triangle with a side of 5 million km in length. Requirements on the forces and moments, 
and the force gradients and moment gradients, applied to the proof mass exist. This paper 
computes these quantities analytically, so that gravitational balancing considerations can 
now be done effectively. 
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This paper describes the development of the self-gravity tool used to predict and 
control the motion of one of the proof masses of the orbiting LISA gravitational wave 
detector. LISA is a space-borne gravitational wave detector, which is formed by three 
spacecraft orbiting the Sun and forming the vertices of an equilateral triangle with a side 
of 5 million km in length. Inside each spacecraft, shown in Figure 1, an optical bench 
monitors the motion of two separated proof masses, which reflect the laser light from the 
adjacent spacecraft along the edges of the equilateral triangle, and senses the gravitational 
wave signal with unprecedented sensitivity. 

The paper describes the details of the self-gravity tool developed at JPL and used 
for gravitational balancing of the spacecraft. A modeling challenge described in the paper 
is how to consider the distributed force and torque between all the participating extended 
bodies. Gravitational forces and moments on each extended body are computed exactly 
from the closed form expression of the gravitational potential of a parallelepiped. This 
approach is currently being incorporated into a general finite element-based self-gravity 
computational tool at JPL for the LISA spacecraft. Requirements on the forces and 
moments, and the force gradients and moment gradients, applied to the proof mass exist, 
therefore these quantities must be computed independently. 

Figure 2 depicts the geometry of the problem, and the potential of the 
gravitational interaction between an extended three-dimensional parallelopiped and a 
point mass source, located at x. Here, the proof mass, or a sub-element of it shaped as a 
parallelepiped, interacts gravitationally with the point source mass M. Any arbitrary mass 
distribution surrounding the proof mass can be thus computed by combining the effects 
of each point mass individually. Denote the distance between these two mass elements by 
r ,  so that r represents the distance between the origins of the two extended bodies “proof 
mass” and “source body M”. The gravitational potential due to the interaction is 
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V=V(r)=GMm( rl- 1 

Let us vary the kinematics of the parallelepiped B, keeping the source M fixed, and 
assuming only small rotations: 

6r = -6% + (r x 1) se 

then the virtual variation of the potential becomes: 

Consequently, the forces and moments, and the forces and moment gradients originate 
from the variation of the potential as follows: 
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where the symbol 63 represents outer product, and with the following definitions: 

r x ( g - d o r )  =E,d"r 

The last step is to sum over all points x of any extended body around the pro.of 
mass parallelepiped. This can be done either by summing over a (very) large number of 



points, or by integrating over finite elements of irregular shapes at the Gauss-Legendre 
nodes. 

Figure 3 shows the computed bounds below which one can consider an adjacent 
extended body as a point mass with respect to the proof mass. Figure 4 shows the initial 
mesh used for predicting the gravitational interaction between two extended cubes. The 
methods used for modeling the gravitational field and its gradients are: 1) by summing 
the gravitational forces and gradients after discretization of the source mass into a large 
number of mass points, (Figure 5) ,  and 2) by summing the gravitational forces and 
gradients after discretization of the source mass into a much smaller number of Gauss- 
Legendre points (Figure 6) .  The conclusion is that very few, optimally located Gauss- 
Legendre points (4 points along each side of the cube, in the example of Figure 3) 
achieve the same result (accuracy of force prediction within 0.5% of exact value) than 
more that 5000 points into which the source cube is discretized. This result is extremely 
convenient for analyses using a dynamic gravitational field, and gravitational balancing 
considerations can now be done effectively. A second paper applies some of these models 
to the gravitational dynamic control of the displacement of the proof mass. 

Figure 1. Picture of LISA spacecraft. 
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Figure 2. Gravitational potential of parallelopiped due to a gravitational point source at x. 
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Figure 3. Bounds for considering adjacent masses as points. 



Figure 4. Two cube problem. 
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Figure 5. Axial force in two cube problem as a function of discretization points. 
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Figure 6.  Axial force in two cube problem as a function of Gauss quadrature points. 




